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Abstract

Visual Vehicle Identification Using Modern Smart Glasses

In recent years wearable devices have been advancing at a rapid pace and one of the

largest growing segments is the smart glass segment. In this thesis the feasibility of

today’s ARM-based smart glasses are evaluated for automatic license plate recognition

(ALPR). The license plate is by far the most prominent visual feature to identify a spe-

cific vehicle, and exists on both old and newly produced vehicles. This thesis propose an

ALPR system based on a sequence of vertical edge detection, a cascade classifier, verti-

cal and horizontal projection as well as a general purpose optical character recognition

library.

The study further concludes that the optimal input resolution for license plate detection

using vertical edges is 640x360 pixels and that the license plate need to be at least 20

pixels high or the characters 15 pixels high in order to successfully segment the plate

and recognize each character. The separate stages were successfully implemented into

a complete ALPR system that achieved 79.5% success rate while processing roughly 3

frames per second when running on a pair of Google Glass.



Sammanfattning

Visuell fordonsidentifiering med moderna smarta glasögon

Under de senaste åren har omr̊adet wearables avancerat i snabb takt, och ett av de

snabbast växande segmenten är smarta glasögon. I denna examensuppsats utvärderas

lämpligheten av dagens ARM-baserade smarta glasögon med avseende p̊a automatisk

registreringsskyltigenkänning. Registreringsskylten är den i särklass mest framträdande

visuella egenskapen som kan användas för att identifiera ett specifikt fordon, och den

finns p̊a b̊ade gamla och nyproducerade fordon. Detta examensarbete föresl̊ar ett system

för automatisk registreringsskyltigenkänning baserat p̊a en följd av vertikal kantdetek-

tering, en kaskad av boostade klassificerare, vertikal och horisontell projektion samt ett

optiskt teckenigenkänningsbibliotek.

Studien konstaterar vidare att den optimala upplösningen för registreringsskyltdetek-

tion med hjälp av vertikala kanter p̊a smarta glasögon är 640x360 pixlar och att reg-

istreringsskylten m̊aste vara minst 20 pixlar hög eller tecknen 15 pixlar höga för att reg-

istreringsskylten framg̊angsrikt skall kunna segmenteras samt tecken identifieras. De sep-

arata stegen implementerades framg̊angsrikt till ett system för automatisk registrerings-

skyltigenkänning p̊a ett par Google Glass och lyckades känna igen 79,5% av de testade

registreringsskyltarna, med en hastighet av ungefär 3 bilder per sekund.
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Chapter 1

Introduction

First the mobile phone revolutionized how we communicate, followed by the release of

Apple’s iPhone which forever changed how we interact with mobile phones and other

devices with embedded screens. In recent years wearable devices have been advancing at

a rapid pace. Recently Google introduced Glass, an unobtrusive device that is worn like

conventional glasses but with a compact computer, high-resolution camera, microphone,

bone-conduction transducer, touchpad and display as well as wireless connectivity built

into the frame. This kind of device is more generally known as smart glasses, and Google

are not the only company trying to get on the train, as analysts predict that by 2018,

more than 25 million head-mounted displays, such as smart glasses, will have been sold

[1].

Common for all of the smart glasses are that they are primarily operated by voice

commands, head and finger gestures or eye winks, making it possible for the wearer to

operate the device while their hands are free to do something else. This, in combination

with the conveniently located display and the availability of the forward-facing camera,

makes the smart glasses exceptionally well suited devices for augmented reality (AR).

AR is commonly defined as when a view, direct or indirect, of the physical real world

is augmented with data. Such data can be comprised of e.g. text and graphics which

help the user perform a task, and there are literary an unlimited number of applications

where AR can be useful. Imagine a police officer could know if a vehicle is stolen just by

looking at it, or a mechanic getting vehicle health information by glancing at the license

plate.

In the trucking industry there are multiple opportunities to make use of AR. By law

each driver need to perform a daily security check of his/her vehicle before taking it into

1
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use. Since drivers do not use the same truck each day and the procedure is different for

each truck type, the inspection is often neglected.

One way of easing the procedure is by implementing automated license plate recognition

(ALPR) in a pair of smart glasses and using AR to guide the driver through the correct

inspection for the truck type in question. This would reduce time consumption for the

inspection as well as make sure the correct checks are performed. Further, many trucks

connects to trailers in order to carry goods. A problem is that the driver sometimes

misread the license plate of the trailer and accidentally transports the wrong trailer,

which in turn result in high overhead costs and delays. By having ALPR in a pair

of smart glasses confirm that the license plate corresponds to the correct trailer, such

mistakes could be completely eliminated.

As truck drivers often are very conservative with regards to technology it is of great

importance that such a device works fast and without delays and with high recognition

rate for the truckers to trust and use the system.

1.1 Partner company

This thesis was performed in conjunction with Scania CV. Scania is a major international

manufacturer of trucks and busses. The company is active in the premium segment of

the truck manufacturing market and are known to be a frontier in new technology. For

future projects Scania is very interested in the potential of wearables, and smart glasses

in particular. License plate recognition is one of the most robust, backward and forward

compatible methods to visually identify a specific vehicle, therefore Scania has an interest

in what can be accomplished in the field of ALPR on this type of new platform.

1.2 Problem Formulation

ALPR has many useful applications, but is also a very difficult problem. The majority of

current research, therefore, reduces the complexity by establishing some delimitations,

such as using stationary capturing devices with high performing and dedicated hardware

[2].

When the device is fixed, the system can easily be calibrated to compensate for any

inclination and complex backgrounds. Further, in such systems the distance to the

vehicle is know, illumination can be artificially improved as well as plate detection can be

improved by knowledge of where in the captured image the license plate might appear. In
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real world applications using smart glasses, many of these delimitations are not realistic,

and most available research are not performed with portable devices in mind [3].

Firstly, as user brings the device with them, all of the above mentioned environmental

aspects will vary and be unknown. Secondly, the performance in modern smart glasses

are no where near the performance of modern computers and dedicated signal processors,

and will most likely not be for years due to the limited capacity of today’s batteries.

Lastly, as the methods in the literature are tested using Intel or AMD processors, there is

no guarantee that they will perform the same on a general-purpose ARM-based system

(which most available smart glasses are built upon).

All of these variables makes it a completely new challenge to perform ALPR using

modern smart glasses rather than e.g. a stationary dedicated device.

1.3 Purpose

The purpose of this thesis is to investigate how an automatic license plate recognition

system should be implemented into a modern pair of ARM-based smart glasses, as well

as to determine if it is possible for such a system to achieve high recognition rate while

maintaining low execution time.

1.4 Research questions

The main research question of this thesis is: Can an automatic license plate recognition

system be implemented into a modern pair of ARM-based smart glasses and achieve

high recognition rate while maintaining acceptable execution time?

In order to answer the main research question it has been broken down into three sub-

questions:

• What license plate localization and extraction methods are most suitable for mod-

ern ARM-based smart glasses?

• What character segmentation and optical character recognition methods are most

suitable for modern ARM-based smart glasses?

• What is the best recognition rate that can be achieved using an ALPR system

developed for modern ARM-based smart glasses in relation to execution time?
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1.5 Delimitations

As previously mentioned, detection of vehicle license plates is a challenge task with many

variables. Due to the short time-window of the master thesis the scope of this research

will be limited.

Each country have individual license plate configurations. Due to the lack of a large

dataset with license plates, this research will be limited to standard Swedish 520x110

millimeter license plates with six black characters, three letters and three numbers, on

white background. Further, the research will assume day-time lightning conditions as

well as the vehicle being scanned is stationary. As it is fairly unnatural for humans to

inspect a vehicle while tilting their head, a maximum roll of ±10 degrees will be allowed.

The research will also be limited to smart glasses running the Android operating system

using an ARM-processor, which most available smart glasses today do.

1.6 Report layout

Chapter 2 studies the methods and results of previous research in the separate stages of

ALPR and also provides a general background to what aspects of ALPR makes it hard

to perform. In Chapter 3 the theoretical framework needed to understand the methods

used in this thesis are explained and the various libraries used are introduced. Chapter

4 explains decisions and in detail describes the separate parts of the study and what

data each part is intended to collect. Chapter 5 objectively presents the collected results

from each of the experiments. The results presented in the previous mentioned chapter

is then discussed and analyzed in Chapter 6 and ultimately leads to Chapter 7 where

the findings are concluded and the research question is answered in a compact format

as well as future research is suggested.



Chapter 2

Previous research

2.1 Automatic License Plate Recognition

Automatic license plate recognition is used for autonomous vehicle identification and

has multiple applications, such as automatic parking attendant [4], toll collection [5],

speed limit enforcement [6], identification of stolen cars [4] and driver support [7] [2].

The main goal is to translate a license plate shown in an image or a video stream to

digitized text.

It is a complex task which is made even more difficult as the system needs to consider

multiple plate variations [8] [9] [10] [11]:

1. The placement where a plate can be found in an image may vary

2. The different sizes a plate can have due to factors such as the distance from the

camera to the vehicle or camera zoom. Further each country may have their own

size and dimension specifications for the license plate

3. The image may contain multiple or no plates at all

4. The plate background or characters may have different colors or the camera used

may capture incorrect colors

5. The font used in different countries may vary

6. Custom license plate text

7. The image may be captured at an angle

8. The plate may be completely or partially covered by dirt

5
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9. Frames or screws that may disturb recognition

Further, the ALPR system will have to accommodate certain environmental variations

such as [8] [9] [10]:

1. The illumination variations caused by vehicle lights, weather conditions and time

of day

2. Conditions such as the background containing plate-similar patterns, numbers or

text or other disturbing information

3. Physical damage to the plate

In order to handle these variations many commercially available products rely on spe-

cialized hardware, such as infrared cameras and dedicated processing units, and for

many applications the workplace is design with optimized lightning. All these variables

show an extremely complicated problem, but using proper computer image processing

techniques, many of these difficulties can be controlled [8].

The typical ALPR system structure is based on four distinct stage. First an image

containing the vehicle and its visible license plate is acquired by a digital camera. The

second stage locates the coordinates of the license plate and extracts that region, re-

sulting in a smaller image containing with just the license plate. The third task is to

isolate each of the individual characters and numbers and pass them separately to the

last module which performs optical character recognition (OCR) on each of the segments

in order to identify the character [7] [12] [13].

2.2 License Plate Extraction

License plate extraction (LPE) is the actual task of detecting, locating and extracting

the license plate from within a larger image, as the plate can exist anywhere in the

image. The input is usually an image of a vehicle with some background and after LPE

is performed the output should only contain the license plate in question. Errors in the

output from LPE greatly reduce performance of ALPR systems. The literature suggests

a wide variety of approaches with varying performance. As often more than half of the

ALPR execution time is spent with localizing and extracting the license plate [14], it is

a module that is very important to select optimal methods for.

Hongliang and Changping [15] use a mathematical morphology operation called ”top-

hat” for a highway ticketing system implementation. The images were captured at a
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fixed angle and a known distance as the morphological operations relate to the object

dimensions. The implementation achieved 97% successfully recognised plates as well as

22 false positives from a test sample of 105 car images with limited disturbing back-

ground. Hongliang and Changping also comments on the implementation being ”a bit

slow”.

Miyamoto et al. [16] achieve ”remarkably high accuracy”, more than 99%, using a 2D

pattern search trying to find numerics and numeric-like figure. When some candidates

are found the most promising is judged by its geometrical shape and the layout pattern

of the numerals in the plate. According to the authors they obtain high performance

independent of the positions, features and configurations of the license plates, but the

approach is time consuming and have a computational time complexity of O(n4) for

images of size n × n [17].

Using connected component analysis (CCA) Zheng, Zhao and Wang [18] achieved near

100% plate location rate while benchmarking and outperforming three earlier proposed

algorithms; ‘line sensitive filters [19], ‘row-wise and column-wise DFTs [20] and edge

image improvement [21]. The test was performed on a Pentium 4, 2.4 GHz PC with

256 MB RAM with an average execution time of 47.9 ms. Mahini and Dorri [22] use

larger images in a similar approach with vertical edges, morphological operation, and

color analysis and manage to achieve 96.5% detection rate with an execution time of

300 ms on a Pentium 4 PC with 512 MB RAM.

Another approach to LPE is detecting edges in the inputs image and then using Hough

transformations to find the license plate region. An advantage with this algorithm is that

is allows for up to 30 degree inclination when detecting straight lines [23]. Unfortunately

the Hough transformation is computationally heavy and also consumes a lot of memory

[24] [25]. Therefore, Duan et al. [24] suggested a combination of Hough transformation

and contour algorithm in order to produce higher speed and increased accuracy of 98,76%

plate recognition rate. The test was performed on a Pentium 4, 1.4 GHz PC with 512

MB RAM with an average execution time of 0.65 seconds per image.

Cascade classifiers for LPE have in recent years grown in popularity. Wang and Lee [10]

used a cascade framework with Haar-like features on plates of different sizes, formats and

illumination with a detection rate of over 99% when executed on a Pentium 4, 3.0 GHz

PC achieving 38 processed frames per second. The use of Haar-like features allows for the

implementation to be relatively invariant to changes in brightness, size (distance), color

and position of license plates in the processed image, however, it can also be sensitive

to inclination. In [26] the authors propose the use of histogram of oriented gradients to

estimate the likelihood of candidates from a Haar-like feature classifier.
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Huang et al. [3] perform preprocessing of the input image and then search for the license

plate using histogram projections along the x-axis to determine the height of the plate

and horizontal segmentation. Using a window based on the license plate dimensions a

search for the final plate is performed along the horizontal segment.

Ref. Main method Image res. Exec. time Success rate
[15] Mathematical morphology

on binary image
- - 97%

[18] Vertical edge extraction
using Sobel operator

384x288 pixel 47.9 ms ! 100%

[22] Vertical edge extraction,
morphological operations
and color analysis

800x600 pixel 300 ms 96.5%

[24] Hough transformation and
contour algorithm

800x600 pixel 650 ms 98.76%

[10] Haar-like feature-based
cascade classifier

640x480 pixel 26 ms 99.86%

[3] Histogram projection with
search window on binary
image

320x240 pixel 293 ms (in-
cluding LPCS
and OCR)

96.7%

Table 2.1: The success rate, execution time and image input resolution for previous
research on license plate extraction.

2.2.1 Preprocessing

The output image from the LPE might still contain imperfections, depending on the

LPE module. Such problems can be nonuniform brightness, tilt and inclination [24]

and often need to be corrected in a preprocessing step before license plate character

recognition can be performed with good results.

2.2.1.1 Vertical and horizontal tilt correction

Xu et al. [27] use vertical and horizontal projection analysis in combination with the

knowledge of the license plate size to find four vertexes. These are then used to perform

the geometric transformation and retrieve the upright rectangle image. Pan, Yan and

Xiao [28] propose a least square method to correct vertical and horizontal tilt in license

plate images. Pan, Xiong and Yan [29] propose a new method for correcting vehicle

license plate tilt, but seem to experience a loss in character quality.
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2.2.1.2 Thresholding

As the lightning differences in separate parts of a scene might vary greatly, global thresh-

olding is often not an appropriate technique. Therefore local or adaptive thresholding is

more common in the literature. Llorens et al. [11] suggest a method where the threshold

is calculated from the mean gray level in a n×n window centered over the pixel. Zhang

and Zhang [30] instead propose an object enhancement algorithm based on the assump-

tion that the characters in a license plate image accounts for 20% of the pixels. So theses

pixels are enhanced while the remaining pixels are weakened. Ying et al. [31] use the

Bernsen algorithm with good performance. Coetzee, Botha and Weber [32] achieve good

results using the Niblack algorithm which calculates a local binarization threshold using

the local standard deviation and mean in a 15 × 15 neighbourhood. Huang et al. [3]

apply Otsu’s method [33] to dynamically determine the threshold for each region. This

lowers the impact of environmental noise in the input image. [22] and [34] also exploit

the Otsu threshold algorithm to binarize their plate candidates.

2.3 License Plate Character Segmentation

The objective of the license plate character segmentation (LPCS) is to partition the

isolated license plate image into segments containing the individual letters and numbers

[35]. The problem is challenging partially due to noise in the image, illumination differ-

ences and shadows or other artifacts present in real world scenarios. Without correctly

segmented and extracted characters the performance of the OCR will be reduced even

for the most robust algorithms available. An extracted license plate may contain two

types of characters, distinct and indistinct characters. Distinct characters are letters and

numbers on the plate that are clearly separated while indistinct characters are connected

to each other [10].

The most simple and common segmentation procedure in the literature [28] is based

around the brightness difference of the characters and background. This method works

well for distinct characters, but will not work if the characters are inseparable. It will also

suffer reduced performance if the analyzed image contains noise. This method is used

where vertical and horizontal projections of the binary license plate image are performed

to obtain a vector with the number of white pixels for each vertical and horizontal line

in the image [3] [24] [36] [37] [38] [39] [40]. The minimum values of the vectors allows

the image to be segmented into characters individual.

CCA has been proposed [41], [22], [10], in combination with object measurements such as

area, hight, width and orientation, for character segmentation. CCA labels 8-neighbour
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clusters of pixels into components and then using the knowledge about the characters

to match the components to potential character segments. This method is simple and

straightforward. However, even though it can handle some rotation, it fails when there

are indistinct characters.

Both of theses methods fail if the plate image is severely degraded or contain indistinct

characters. Nomura et al. [35] argues that a mathematical morphology approach is

more suitable for segmenting such complex plates. Using information about the maxi-

mum number of letters and numbers in combination with natural segmentation points

and mathematical operations to adaptively determine the optimal distribution of seg-

mentation lines.

Capar and Gokmen [42] suggest the use of a statistical boundary shape model with an

implicit contour based segmentation method to allow the characters to be segmented

and recognized in the same module. The authors state that similar previously proposed

systems have required high computational power, but at the same time mention that

their system has one less optimization step and should be faster. Unfortunately they

never explicitly show their performance increase in the paper. Kim, Jang and Kim [43]

also use contour tracking to perform character segmentation. Since both methods utilize

the characters contours, their performance are greatly decreased if indistinct characters

are present.

Franc and Hlavac [44] propose a method based on machine learning for use with noisy

low resolution images. A hidden Markov chain is used in conjunction with specific

knowledge about the license plate, such as the number of segments needed and that

the plate characters can be segmented with equal (but unknown) width. The proposed

method achieved a success rate of 96.7% using real-world data.

2.4 License Plate Character Recognition

The extracted and isolated characters from the LPCS need to be recognized in order

to produce the digital license plate number as an output. The process of converting

text from images is often referred to as optical character recognition (OCR) and can be

performed using a wide variety of methods. But as the input data still might suffer from

issues such as fluctuations in character thickness, partial cut-offs, noise, etc [16], theses

must be taken in to account or corrected in order to achieve optimal results. Depending

on the severity it might be enough to e.g. resize the characters to one standardized size

before recognition.
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Most OCR methods are based on one of two types of data; raw image data or extracted

features. The first being the untreated pixel values in the input image while the latter

being based around the concept that some pixels are more important in distinguishing

the character than others. Feature extraction can also be used to reduce the size of data

that is too large to be processed.

2.4.1 Using Raw Pixel Data

Template matching is a simple and straightforward approach to using raw pixel data

[7]. Most methods that utilize template matching are performed using binary images,

as lightning conditions produce too large variety in e.g. gray-scale sources. The binary

character segment is then compared to templates and their similarity are measured, the

character of the template with highest similarity is then chosen as candidate. What

often differ between the studies using template matching is the similarity measuring

techniques. Template matching works well for single-font, fixed size and non-rotated

scenarios [28].

Sarfraz, Ahmed and Ghazi [7] use normalized inputs of 40×40 pixel images and matched

against the template database using what seem to be the simple Hamming distance.

This approach was tested on a large image database producing 95.24% accuracy. Lee,

Kim and Kim [45] normalize their images to 40 × 40 pixels, but instead calculate the

Jaccard similarity coefficient in order to classify with 98.8% recognition rate and average

execution time per character of 286 ms (incl. LPCS) on a 50 MHz 486 PC. Miyamoto

et al. [16] apply a similar approach but instead use Mahalanobis distance to compare

similarity and also implement Bayse decision theory biased to the safe side. No partial

results are presented for the OCR, but the system achieve 99% recognition rate for

all three ALPR steps. In [46] the authors try performing OCR through normalized

cross-correlation, but only attain 92.7% recognition rate using 275 images. Using 11

templates for each character, each with different rotation, Natio et al. [34] obtained

97.3% recognition rate for plates with up to 40 degree rotation.

2.4.2 Using Extracted Features

2.4.2.1 Feature Vectors

As each pixel in an image does not provide equal amount of information towards recog-

nizing a character, one could try to reduce the whole image into a set of features which

describes the specific character. While it reduces the processing time it also, if chosen
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correctly, increases performance for distorted characters compared to template matching

[28]. The extracted features are often stored in a matrix called feature vector.

In [47], the authors build the feature vector from blocks of 3 × 3 pixels in a binary

character image. The number of black pixels in each block is then counted and used as

features. [24] use slightly overlapping windows of 9 × 9 pixels and scan the image from

left to right and top to bottom, calculating the ratio of foreground pixels in the window.

There values are then used as features.

Ko and Kim [48] suggest an approach to feature extraction where the character is scanned

along a vertical and horizontal line. While scanning, the number of transitions between

character and background is counted and used as feature vector. This approach is robust

to rotation as the same feature vector is produced independent of rotation.

Gabor filter is used for building feature vectors in [49]. Abdullah, Khalid and Yusof

[50] propose the use of Kirsch edge detector for feature extraction but concludes that it

might be insufficient for feature extraction.

The authors in [11] extract a feature vector by dividing the input image into a grid of

20 × N units, where N is proportional to the width of the license plate image. In each

cell the horizontal and vertical derivatives are computed as well as the average gray level

and those are used as features.

[41] use four discrete-time cellular neural networks to generate features based on vertical

and horizontal projection, as well as vertical and horizontal connected component count.

Each of theses features were then transformed into five inputs in a feature vector.

2.4.2.2 Classifiers

The extracted features are used to classify the character segments into letters and num-

bers. There are many types of classifiers, but the issue with many of them are that they

need extensive data sets to be trained with before they can perform classification.

Llorens et al. [11] suggest the use of hidden Markov models (HMM). They train one

HMM for each character and achieved 98.1% accuracy rate. The authors states that

most errors were due to blurry images and overexposure. Duan et al. [24] also make

use of a HMM and trains it with 60 images of each class, producing 97.52% recognition

rate.

The authors in [14] implement four separate support vector machines (SVMs) for clas-

sification of characters for each distinct character region in korean license plates. In

the case of numbers they utilize one SVM for each number respectively. Doing so they
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obtained a recognition rate of 97.2% when tested on 400 video clips containing 10 frames

each.

A multi-layered perceptron (MLP) is a feedforward artificial neural network model that

is commonly used in the literature for character identification. Many of them are im-

plemented in a similar fashion where they are trained using error backpropagation, the

drawback of this technique is that it requires many training cycles and large quantities of

training data in order to perform well. Nijhuis et al. [41] suggest a MLP with 24 input-,

15 hidden- and 36 output neurons (one for each character) and by limiting the recog-

nition to be classified as successful only if the value of the output neuron exceeds 0.85

and all other output neurons having values lower than 0.25, they achieve a recognition

rate of 98.51%.

Another type of neural networks, probabilistic neural networks (PNN), are also described

in the literature because of robustness and superior training time compared to feedfor-

ward backpropagation networks [51]. Özürk and Özen [52] apply PNNs to character

recognition and produce a recognition rate of 96.5% with low execution time. Hu, Zhu

and Zhang [51] also make use of PNNs in their implementation and obtain an impressive

99.5% recognition rate, significantly outperforming template matching using the same

test images. The performance difference is even larger when severely noisy images are

used.

Some of the researchers have used general-purpose optical character recognition libraries.

Zheng and He [40] implemented the Tesseract OCR library as their character recognition

module, and achieve an incredible performance of 98.7% recognition rate.
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Ref. Main method Exec. time Recognition

rate

[7] Template matching with Hamming dis-

tance

- 95.24%

[45] Template matching with Jaccard simi-

larity coefficient

286 ms 98.8%

[16] Template matching with Mahalanobis

distance

- 99% (complete

ALPR system)

[46] Template matching with normalized

cross-correlation

- 92.7%

[34] Template matching with multiple char-

acter templates

- 97.3%

[11] One HMM trained for each character - 98.1%

[24] One HMM trained for all characters - 97.52%

[14] One SVM for each character group,

separate SVMs for each number 0-9

- 97.2%

[41] MLP with 24-15-36 configuration and

output criterion

- 98.51%

[52] PNN - 96.5%

[51] PNN - 99.5%

[40] Tesseract OCR libarary - 98.7%

Table 2.2: The recognition rate and execution time (if available) for previous research



Chapter 3

Theoretical framework

3.1 Swedish License Plates

There are many color and shape configurations of Swedish license plates depending on

the vehicle and situation, such as diplomatic and taxi vehicles. In this thesis the focus

will be on the most common license plate, which has a single row of six characters with

white background and black characters. All new license plates also have a EU-symbol

with blue background located on the left side of the plate, see Figure 3.1.

Since 1973 the format of three letters followed by three digits have been used. Even

though the character configuration have been constant, the swedish department of motor

vehicles (currently known as Transportstyrelsen) have changed the typeface multiple

times. In the last 20 years a customized Helvetica font, a font face similar to Alte DIN

1451 Mittelschrift [53] and now a custom font called Swedreg have been used.

Figure 3.1: An image of the standard 520x110 mm Swedish license plate as of 2014.

3.2 Algorithms and Methods

3.2.1 Smoothing

Smoothing, or blurring as it is also called, is a frequently used image processing technique

to reduce noise in an image. The most common approach to smoothing is by applying a

linear filter. In this thesis a simple 5x5 normalized box filter will be used. Each output

15
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pixel is determined as the mean of it kernel neighbours. The kernel K is defined as in

3.1.

K =
1

Kwidth · Kheight

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 ... 1

1 1 1 ... 1

. . . ... 1

. . . .. 1

1 1 1 .. 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(3.1)

3.2.2 Binarization

In regular, global, thresholding an arbitrary threshold value is decided on before the

thresholding is performed. In this case it is impossible to know beforehand if the value

chosen is good when applied to a previously unseen image. Otsu’s binarization consider

an image with two histogram peaks, bimodal image, and tries to find the threshold value

so that the weighted within-class variance is minimized in 3.2.

σ2
w(t) = q1(t)σ2

1(t) + q2(t)σ2
2(t) (3.2)

q1(t) =
t∑

i=1

P (i) & q2(t) =
I∑

i=t+1

P (i) (3.3)

µ1(t) =
t∑

i=1

iP (i)
q1(t)

& µ2(t) =
I∑

i=t+1

iP (i)
q2(t)

(3.4)

σ2
1(t) =

t∑

i=1

[i − µ1(t)]2
P (i)
q1(t)

& σ2
2(t) =

I∑

i=t+1

[i − µ2(t)]2
P (i)
q2(t)

(3.5)

where

Symbol Explanation
t Threshold level

P (i) Pixels with intensity value i
σ2

w(t) Within-class variance
qx(t) Number of pixels in each class x
µx(t) Mean of each class x
σ2

x(t) Variance for each class x

Table 3.1: Variable explanation for the Otsu algorithm.
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3.2.3 Morphological Closing

Morphological closing of a binary image is obtained through performing morphological

dilation followed by erosion. In this thesis it will be used to close small holes in the

binary image during license plate candidate detection.

The dilation process slides a structuring element over the image for probing and expand-

ing the foreground shapes. While sliding the structuring element, each location where

the element covers any part of the foreground shape, the center pixel of the element

will be given the value ”1”, otherwise ”0”, allowing the shape to expand. The process

of erosion is similar, but here only locations where the complete structuring element is

inside the foreground shape will be given the value ”1”. The process is illustrated in

Figure 3.2.

Figure 3.2: An illustration of the morphological closing. From left to right: original
shape, erosion with a round element, result of the erosion, dilation of the eroded shape,

result of the dilation.

3.2.4 Vertical Edge Detection

There are various ways to detect edges in a digital image. An edge can be explained

as when the pixel intensity drastically changes from one pixel to a neighbouring pixel.

Using derivatives is a good way to express these changes as an edge location would

appear as a local maximum or minimum. The Sobel operator can be used to compute

an approximation of the gradient of a digital image intensity function.

Assuming that the input image is I, we would calculate the vertical gradient Gx at each

point by convolving I with a 3x3 kernel as shown in 3.6.

Gx =

⎡

⎢⎢⎣

−1 0 +1

−2 0 +2

−1 0 +1

⎤

⎥⎥⎦ ∗ I (3.6)

3.2.5 Haar-like features

Features in machine learning aim to encode unique information about a certain object or

image. Their main purpose is to replace raw pixel values as input features to a machine
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learning algorithm, in order to reduce the within-class variability, resulting in a more

robust classifier. Viola et al. first introduced Haar-like features for face detection, but

they have become popular for other types of object detection, primarily because of its

speed [54]. The Haar-like features of any size can be calculated in constant time, O(1),

with the use of integral images.

The integral image is a data structure with the same dimensions as the analyzed image

and where each element’s value, I, is the sum of all pixel values, i, above and to the left

of itself, as in 3.7 [55]. The integral image is efficiently computed in a single pass over

the image as each element in the integral can be calculated using 3.8. Once the integral

image is obtained, any rectangle in the image can be evaluated in constant time using

four values as in 3.9. The integral image is visualized in Figure 3.3.

I(x, y) =
∑

x′≤x
y′≤y

i(x′, y′) (3.7)

I(x, y) = i(x, y) + I(x − 1, y) + I(x, y − 1) − I(x − 1, y − 1) (3.8)
∑

x0<x≤x1
y0<y≤y1

i(x, y) = I(D) + I(A) − I(B) − I(C) (3.9)

A B

C D

Figure 3.3: A visualization of the points used from the integral image to calculate a
sub-area.

The standard Haar-like features presented by Viola et al. consists of a class of local

features that are extracted by subtracting the pixel value sum of a rectangular sub-

region of the feature from the remaining region. As the regions are rectangular, the

features are easily calculated using the integral image. Lienhart and Maydt extended

the set of Haar-like features by rotating them 45 degrees, as can be seen in Figure 3.4

[56]. By rotating the integral image as well, the extended features can still be efficiently

calculated.
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(1) (2) (3) (4) (5) (6) (7)

(8) (9) (10) (11) (12) (13) (14)

Figure 3.4: An illustration of straight and rotated Haar-like features. The white areas
are subtracted from the black areas.

3.2.6 Classifier

3.2.6.1 Boosting

Boosting is a powerful learning concept which in this thesis is used as the basic classifier.

It is based around the fact that many ”weak” classifiers with low computational cost can,

when combined, perform as a powerful ”strong” classifier. The only criterion required

of a weak classifier is that it performs better than chance, less than 50% error over any

distribution, which allows it to be simple and fast. The final classification is then based

on a weighted vote of the weak classifiers, as in 3.10.

F (x)︸ ︷︷ ︸
Strong

= α1f1(x)︸ ︷︷ ︸
Weak

+α2f2(x) + α3f3(x) + ... (3.10)

3.2.6.2 Cascade of Classifiers

To perform classification using a boosted classifier with many features is time consum-

ing. A faster way is to use a cascade of classifiers with only a few features instead.

The cascade is a series of classifiers (rejecters) where each rejecter detects almost all

objects of interest but rejects a large number of non-objects. Each stage is increasingly

more computationally expensive, but by discarding most of the non-objects early in the

cascade saves lots of computations, as visualized in Figure 3.5.

Input plate
candidate

Stage 1 Stage 2 ... Stage N
Most likely a
license plate

Not a plate Not a plate Not a plate

Maybe Maybe Maybe

Definitely not Definitely not Definitely not

Figure 3.5: A visualization of the flow through a cascade classifier.
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3.2.6.3 Training

During the supervised training the adaptive boosting method AdaBoost is used to select

which few features should be applied in each of the classifier stages. There are multiple

versions of AdaBoost, but for this paper we use Gentle AdaBoost [54][57].

At each round of boosting, the feature-based weak classifier is added that has the lowest

error in classifying the training samples. The iteration proceeds until a set of defined

criteria are met, such as the minimum acceptable hit rate and the maximum acceptable

false alarm rate. For each increasing stage in the classifier cascade, the number of weak

classifiers needed to achieve the defined hit rate and false alarm rate is higher.

3.2.7 Classifying

When the classifier has been trained, it can be used to classify a region of interest with

the same size as the training data. The classifier output is a ”1” if a license plate is

detected, otherwise a ”0”. To search the whole input image for a region of interest, a

sliding search window is used to evaluate each possible location, as illustrated in Figure

3.6. To deal with scaling of the object the search window and features are scaled by a

scaling factor each time the search window finishes scanning the image, this proceeds

until the scaled search window reaches a defined maximum size.

Figure 3.6: An illustration of how the sliding search window tests all possible locations
for a license plate.

3.2.8 Vertical projection

By projecting the white pixels of a binary image along its rows generate a histogram

reflecting the amount of white pixels in each row. The number of white pixels H in a

row y of image I can be calculated as in 3.11. Figure 3.7 presents a visualization of the

vertical projection.

H(y) =
xmax∑

x=1

I(x, y) (3.11)
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Figure 3.7: A visualization of vertical projection on an extracted license plate seg-
ment.

3.2.9 Horizontal projection

Horizontal projection is similar to the vertical projection, but instead projects the white

pixels along the image columns. Thus the sum of white pixels H in a column x of image

I can be calculated as in 3.12. Figure 3.8 presents a visualization of the horizontal

projection.

H(x) =
ymax∑

y=1

I(x, y) (3.12)

Figure 3.8: A visualization of horizontal projection on an extracted and vertically
cropped license plate segment.

3.3 Libraries

3.3.1 OpenCV

Open source computer vision (OpenCV) [58] is an industry standard and open source

image processing library that is free to use for both commercial and academic use [59].

The library contains more than 2500 optimized algorithms which are accessible through

C++, C, Python, Java and MATLAB interfaces on multiple platforms.

3.3.2 Tesseract OCR engine

The Tesseract OCR engine [60] was originally developed by HP, but was released as

open source code in late 2005. Since then, there have been extensive contributions to

the library by major actors, such as Google, and it has been proven to perform in parity

with major commercial OCR applications [61].

Tesseract comes pre-trained for a number of common typefaces, but the developer can

train the library for any custom typeface using the integrated and partially automated

training procedure [62].
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Methods

4.1 System overview

As is illustrated in Figure 4.1 the proposed system is built on three major stages with

individual tasks; extraction, segmentation and recognition. The flow through each of

the stages are illustrated in Figure 4.2, Figure 4.3 and Figure 4.4.

Camera frame
capturing

License plate
extraction

Character
segmentation

Character
recognition

Digitized
characters

Figure 4.1: An overview of the stages in the proposed ALPR system.

Resize frame Smooth
Detect

vertical edges Threshold
Morphological

closing

Contour
detection

Evaluate
dimensions

Scale co-
ordinates

Classify
candidates

Derotate

Figure 4.2: An overview of the flow through the license plate extraction stage.

Vertical
projection

Vertical
segmentation

Horizontal
projection

Horizontal
segmentation

Figure 4.3: An overview of the flow through the license plate character segmentation
stage.

Add padding to
the character

Tesseract OCR

Figure 4.4: An overview of the flow through the license plate character recognition
stage.
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4.2 Stage Optimization

There are multiple factors that play a role in achieved execution time and success rate

for each ALPR-stage, and for low powered devices such as the ARM-based smart glasses,

keeping the execution time down is a challenge. As there are trade-offs between execu-

tion time and success rate we need to find the configuration that produces the optimal

success rate to execution time ratio. This was done through a set of three individual

configuration benchmarks.

4.2.1 Environment

4.2.1.1 Hardware specifications

Figure 4.5: An image of the Google Glass.

Each of the following optimization tests were performed on the Google Glass smart

glasses. The glasses use a central processing unit (CPU) from OMAP running at a

clock speed of 1.0 GHz, which includes a general-purpose dual-core ARM Cortex-A9

architecture processor. The prism projector located slightly above the wearer’s field of

vision produces a 640x360 pixel display, which to the wearer looks equivalent of a 25

inch screen from 2.4 m away. The camera is fixed to the frame of the glasses and is

therefore always pointing in the same direction as the wearer’s head. Even though the

camera is only rated for 720p video, it is able to capture a continuous stream of preview

frames at a 1080p resolution. The Google Glass operating system is built on top of the

Android platform, thus most of the Android application programming interfaces (APIs)

are available in the glasses, as well as some APIs developed specifically for the Google

Glass.



24

Specification Configuration
Operating system Android 4.4 Kitkat

CPU OMAP 4430 1.0 GHz
RAM 1 GB

Display 640x360 pixels prism projector
Camera 5 megapixel photos, 720p video at 30 FPS

Table 4.1: A summary of Google Glass hardware and operating system specifications.

4.2.1.2 Libraries

During this study multiple libraries have been utilized to speed up development and

to ensure that critical functionality is optimized. The use of libraries also increase the

generalizabilty and repeatability of the study.

The OpenCV4Android SDK 2.4.10 distribution was used to enable development on the

Android platform using Java. Further the Tesseract fork tess-two was used to implement

the Tesseract functionally on the Google Glass platform.

4.2.2 License Plate Candidate Detection

The license plate extraction is the most time consuming task in an ALPR system. This

is mainly due to the need of a high resolution input image in order to distinguish the

license plate from a distance. The wide-angle camera fitted on most smart glasses add

to this issue as the captured image contains large areas of background even at close

distances. To minimize the number of pixels that the classifier need to process, the first

step generates a number of smaller potential license plate candidates from the image.

As license plates contain a high concentration of vertical gradients compared to most

backgrounds and the rest of the vehicle’s front [63], they can be used to find potential

candidates. Before detection of vertical edges, using a Sobel operator, the input image

was smoothed and after the resulting grayscale image was reduced to binary format in

order to perform morphological closing. To filter out some of the false candidates the

contour finding algorithm suggested by Suzoki et al. [64] was used to find the blob

contours and only candidates with license plate dimensions were kept.

The performance of the vertical edge detection is deeply dependent on the resolution of

the input frame. If the resolution is too low details are lost, but if it is too high the com-

putations take unnecessary long time. Using the optimal input resolution is key to a high

performing system. By alternating between five input resolutions (1280x960, 960x720,

800x600, 640x360 and 320x180) together with the configurations for the classifier, the

performance was measured in comparison with the execution time.
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4.2.3 License Plate Candidate Classification

The license plate candidate detection produces some false positives, therefore a classifier

is needed to reject the candidates that does not contain a license plate. A Haar-like

feature cascading classifier was used for this task, as it can discard a large number of

non-license plate regions using simple and fast computations, while still allowing for

some rotation and size variations as well as illumination difference.

4.2.3.1 Dataset

In order to train the classifier a large number of positive and negative images (images

that contain license plates and images that does not) were needed. 500 images of cars

with Swedish license plates were manually captured in a large parking lot, using a 8

megapixel smartphone camera. Each license plate was using the Swedreg typeface or

the slightly older Alte DIN 1451 Mittelschrift based typeface. The images were collected

over a period of three days and under varying lightning conditions. The use of a camera

other than the Google Glass does not matter in this case, since the small variations

that might occur would not be present in the low resolution images as used during the

training described below.

Thereafter the plates were manually extracted into compact plate regions containing as

little non-plate content as possible. Each plate was converted to grayscale format and

normalized to a size of 80x17 pixels. To further improve robustness of the classifier four

more samples were generated from each of the extracted regions by randomly rotating it

a maximum of ±10 degrees around the horizontal axis and applying intensity deviation

of up to 40 pixel values. This resulted in a total of 2500 samples, 2000 for training and

500 for testing.

The negatives samples were collected from arbitrary images from multiple sources, such

as Flickr [65], the UC Irvine Machine Learning Repository [66] and snapshots extracted

from videos recorded with a pair of Google Glass. All samples were thoroughly examined

to make sure that no license plates were present in the images. The negative samples

were cropped and scaled to match the positive sample size of 80x70 pixels. The total

number of negative samples collected was 7000.

4.2.3.2 Training

Since the smart glasses provide very limited computing power, offline training was se-

lected to train the model outside of the smart glasses. The classifier used was a cascade
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Figure 4.6: Examples of positive (left) and negative (right) samples.

of boosted classifiers, working with extended Haar-like features [67]. There are multiple

types of boosting algorithms, AdaBoost has proven good performance for multiple types

of object detection [54] and Gentle AdaBoost in particular have been argued to be less

prone to overfitting and thus provide better generalization performance [67][68]. There-

fore the cascade was trained using Gentle AdaBoost with Haar-like features as weak

classifiers. The training procedure was configured to produce strong classifiers with the

following performance requirements:

Requirement
Number of stages 16

Minimal true positive rate for each stage 99.9%
Maximal false positive rate for each stage 50%

Table 4.2: The requirements for the cascade classifier training.

This configuration allows for a theoretical true positive rate of 98.5% and a false positive

rate of 30.5 ppm. The training procedure was very time consuming and took just under

three days to finnish using a modern Intel Core i7 3.6 GHz with 16 GB RAM. The

output from the training was a XML file with information about each of the classifier’s

trained stages which could be transferred for use on the smart glasses.

4.2.3.3 Classification

The classifier need to identify whether a plate candidate detected by the vertical edge

procedure actually is a license plate or not. To do this a search window was moved

across the plate candidate area and every position were checked using the classifier, if

no license plate was found then the search window was scaled to a larger size and the

search was reinitiated. The smaller the size increments are and the larger size variation

we allow for the license plate, the longer detection time we will have. Therefore we need

to find which configuration achieves the highest detection rate in relation to cost.

To find the optimal configuration, each of the combinations were tested with plate

candidates selected by the vertical edge procedure. This was done by varying the search

window scale factor between 3% and 13%. The candidates themselves came from 125
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captured images of truck fronts from varying natural observation distances (ranging

from 1.5 to 5 meters). Execution time and whether a plate was detected was captured

and the average result for each configuration was calculated. A plate was considered

detected if the classifier produced only one true positive and no false positives. Keeping

low execution time is important, therefore a simple ratio between the success rate and

the execution time for each configuration was calculated, in order to compare the success

of each configuration with regard to execution time. This ratio might promote really

fast but low-performing configurations, as 1% success rate at 10 ms would produce a

high ratio. To ensure that this was not the case, the ratio was also manually checked to

be reasonable.

To be able to classify a license plate from 5 meters distance, the full resolution of the

Google Glass preview frame need to be utilized in order for the plate to be large enough

for the classifier to find. Therefore, the license plate candidate coordinates passed from

the candidate detection step needs to be scaled to the full 1920x1080 pixels resolution

and then the original camera frame is used to crop the license plate candidate to be used

with the classifier.

4.2.4 License Plate Character Segmentation

The segmentation method, vertical and horizontal projections, was chosen for its simplic-

ity and the fact that many researches have used it with good results. The segmentation

benchmark was performed to determine the optimal configuration with regards to suc-

cess rate versus execution time. It is also important to establish the minimum required

license plate resolution needed to successfully segment the characters.

By varying the height of the license plates feed to the segmentation module between 15

pixels and 35 pixels, the success rate and execution time could be recorded. Each of the

plate heights were tested on 100 separate derotated and cropped license plates while the

performance was recorded. A license plate was considered successfully segmented only if

all 6 characters were segmented into tightly fitted boxes and without any false positives.

4.2.5 License Plate Character Recognition

The popular general purpose and open source OCR library Tesseract [60] was selected

because of its success in other applications [69] as well as previous research on ALPR

[40].

Since Transportstyrelsen does not have the typefaces of the Swedish license plates in

an easily available digital format, Tesseract was trained to recognize the typeface Alte



28

DIN 1451 Mittelschrift, which is similar to the most common typeface in Swedish license

plates.

It is critical for Tesseract to get as high quality input as possible. But we need to

determine if there is a significant execution time trade off for using higher resolution

input and if there is a minimum input resolution for which we still can achieve decent

recognition rates.

To test this, 296 letters and 308 digits were extracted and labeled from real-world li-

cense plate images. The characters were feed to the trained Tesseract library with

varying character heights, from 10 pixels to 25 pixels, and the execution time as well as

recognition rate were recorded. A character was considered correctly recognized only if

the module output the correct digitized character.

4.3 Feasibility Study

All three stages; extraction, segmentation and recognition were combined and imple-

mented into a complete ALPR application for the Google Glass. The same environment

as described in Section 4.2.1 was used. The extraction stage was configured using the

settings found most promising in Section 4.2 and the input images were not allowed

to be smaller than the lowest input height found in Section 4.2.4. A fast probabilistic

Hough transform procedure [70] was added to find the rotation of the license plate and

to derotate it between the extraction and segmentation stages.

A pair of Google Glass was used to capture images of 42 separate vehicles. Each vehicle

was captured from 5 different positions; three front images from varying distance between

1.5 meter and 5 meter as well as two from an angle of up to 10 degrees. Each image was

resized to a resolution of 1920x1080 to match the maximum preview frame resolution

that could be provided by the Google Glass camera. For each of the ALPR stages the

configurations from the stage optimization experiments were used; 640x360 pixels input

frame for the vertical edge detection, 1.13 as scaling factor for the classifier search-

window and maximum available plate and character height for the segmentation and

recognition stages (but not lower than 20 pixels and 15 pixels respectively).

The implementation was feed the 210 input frames to test success rate and execution

time on the ARM-based smart glasses. The license plate was only considered correctly

recognized if all six characters were successfully and correctly output from the system.
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Results

5.1 Stage Optimization

5.1.1 License Plate Extraction

Each input frame from the dataset was tested for each of the 30 individual configurations.

For each configuration and frame, the total execution time was recorded as well as if a

license plate was successfully extracted. A plate was considered successfully recorded

only if a clean derotated license plate with some additional padding was the output.

The results from the extraction stage optimization of the license plate extraction module

are visualized in Figure 5.1. The bars illustrate the recognition rate for each of the 30

configurations with regards to execution time, success rate divided by execution time.

Full details can be found in Appendix A.1.

The vertical edge detection performs extremely bad for the 320x180 pixel input reso-

lution with a recall just above 4%. The recall rapidly improves for input resolutions

higher than 320x180 and peaks at slightly above 98%, but at the cost of execution time.

At even higher resolutions the performance decrease slightly and the execution time

increase rapidly. The chart clearly shows that the optimal performance is achieved with

configuration 12; 640x360 pixels input size and a scale factor of 1.13.

5.1.2 Character Segmentation

Each of the license plate images from the dataset were resized to each of the five defined

input heights then feed to the segmentation stage. The execution time and success rate
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Figure 5.1: A chart of the ratio, success rate divided by execution time, for configu-

ration 1 through 30. Taller bars represent higher success to time ratio.

were recorded. The license plate was only considered successfully segmented if all 6 of

the plate’s characters were correctly segmented.

Figure 5.2 presents the results from the character segmentation optimization. Each bar

corresponds to the height of the input license plate and the percentage of plates in which

all six characters were correctly segmented and output.

The result is remarkably high and might to some extent be due to the somewhat artificial

nature of the manually cropped license plate input images as compared to the slightly

sloppier cropping performed by the extraction stage. Figure 5.2 clearly indicates that

there is a minimum plate height of 20 px required for successful segmentation. The

execution time for each of the input heights were below 1 ms.

5.1.3 Character Recognition

Each of the character segments in the dataset were resized to each of the four defined

character heights and feed to the recognition stage. Execution time and success rate

were recorded for each scenario. A character was considered successfully recognized if

the correct digitized character was output from the recognition stage.

The results in Figure 5.3 reflects the performance of the character recognition stage

for the various four input character heights. Each bar corresponds to one of the four

character heights together with its respective recognition rate.
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Figure 5.2: A chart of the percentage successfully segmented license plates as a result

of input license plate height.

As with the segmentation stage there seem to be a clear minimum of 15 pixels hight

needed for the recognition stage to successfully recognize each character. For larger

inputs the recognition rate is very good. It performs marginally worse than found in

[40], which is expected due to the fact that the training was done with just one typeface.

The character height feed to the recognition stage had very low impact on the execution

time as all recognitions took around 4 ms to perform.
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Figure 5.3: A chart of the percentage successfully recognized characters as a result

of input character height.

5.2 Feasibility study

For the feasibility study each of the stages were linked together, and for robustness a

derotation procedure was added between the extraction and segmentation stages. The

configuration from previous experiments was used. The system was fed with real-world

images from the dataset and the success rate as well as execution time were recorded. A
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license plate was only considered successfully recognized if all 6 characters were correctly

output in digitized text.

Table 5.2 indicates the percentage of all license plates that made it successfully through

each individual stage and Table 5.1 reflects the success rate of each individual stage, e.g

the percentage of license plates fed into a stage that were successfully output from that

stage.

The system success rate is very good, 79.5%, when considering the limitation in the

training of the recognition stage. It is easily derived that license plates containing the

letters ”W” and ”M” reduce the success rate greatly. If plates containing the characters

”W” and ”M” are removed, the system performs with 87.4% success rate.

All plates Plates
without
W and M

Plates
containing
W and M

Extraction success 96.7% 97.4% 90.0%
Segmentation success 95.6% 95.1% 100.0%
Recognition success 86.0% 94.3% 5.6%

Table 5.1: The individual success rate for each stage for three scenarios

All plates Plates
without
W and M

Plates
containing
W and M

Correctly extracted 96.7% 97.4% 90.0%
Correctly segmented 92.4% 92.6% 90.0%
Correctly recognized 79.5% 87.4% 5.0%
Average execution time 320 ms 316 ms 359 ms

Table 5.2: The percentage of input images that were successfully output from each
stage and average total execution time for three scenarios.
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Discussion

6.1 Stage Optimization

6.1.1 License Plate Extraction

As mentioned in Section 5.1.1, the performance when using 320x180 pixel as frame size

for the vertical edge detection is exceptionally low. As other research [18] have achieved

good or at least decent results while applying a similar resolution, one would expect much

better performance. To understand why this is, the wide-angle nature of the camera

fitted to current smart-glasses need to be taken in to consideration. When analyzing

the type of images used in previous research it quickly becomes obvious that the input

frames used in those studies are taken with a much more narrow-angle lens and/or at a

closer distance. Both of which lead to the license plate appearing larger in the image,

and thus keep their vertical edges even though the frame resolution is low. As can be

derived from Table A.1, in this study we need at least an input resolution of 640x360

pixels in order to successfully detect license plate candidates at up to 5 meters distance

and with the Google Glass camera as capturing device.

Figure 6.1: A comparison of an image from a previous study and an image from
this thesis. From left to right: An input image captured at close distance and with a

narrow-angle capturing device. An image captured using Google Glass.
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The slight loss in recall for input sizes larger than 800x600 pixels is likely because of the

increase in details and noise, thus producing a large set of potential false plate candidates.

This is confirmed by checking the number of license plate candidates generated for each

input resolution, as the number of candidates rapidly increase for larger input frame

resolutions.

There is no significant difference in recall, around 4 percentage units between the highest

and lowest scaling factor, when varying the scaling factor, but a significant percentage

impact on the total execution time for the lower input resolutions. As the size of the

license plate candidates are not related to the input size used for the vertical edge

detection, it is completely natural that the time consumption is independent of the

input resolution, thus affecting the total execution time of low input resolutions more

than the larger resolutions.

6.1.2 Character Segmentation

By studying the results in Figure 5.2 it is obvious that the character input height need

to be higher than 15 pixels in order to achieve good segmentation results. It is further

clear that the execution time is very fast, averaging 1 millisecond, for each of the tested

input sizes, thus the extracted license plate should be kept with as high resolution as

possible in order to produce good segmentation results.

When studying the actual output from the module it is easy to see that when the input

resolution decrease, the thresholding procedure starts eliminating important character

features due to its small size. The characters also tend to approach a thickness of 1

px or less, which further makes the module fail, due to the fact that one black pixel is

allowed in the white lines of the license plate. With such thin character, sometimes the

thresholding makes the characters break apart, resulting in character being split up into

multiple segments, hence making the segmentation fail.

This method of segmentation is very sensitive to rotation and noise in the image and

therefore produces bad results for e.g. small or very dirty license plates. As mentioned in

Section 4.2.4, it was chosen for it speed, and not necessarily for robustness. In hindsight

a CCA procedure might have been more robust, but at the time it was discarded in

favor for the faster projection approach.

6.1.3 Character Recognition

The performance of the character recognition module is very good, as can be seen in

Figure 5.3, while taking into consideration that it is a general purpose library. There is
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an apparent drop in performance for characters with a height less than 15 pixels, but

for larger characters the module produces recognition rates of well above 90%. There

are no significant difference in execution time between the tested input resolutions,

which indicate that the highest available resolution should be passed to the character

recognition module.

When analyzing what characters the module fails at recognizing there are two letters

(W and M) and three digits (9, 6 and 3) that are more common than the others.

Studying the W and M characters, it is clear that these two characters are most dissim-

ilar in both the new and the old license plates when compared to the Alte DIN 1451

Mittelschrift, which was used for training the OCR engine. Further, all instances of the

digits 9, 6 and 3 that were misrecognized belong to license plates with the new Swedreg

typeface. In the Swedreg typeface both the 9 and the 6 have lost some of the curvature

in their ”tail” and ”top” as well as the 3’s ”top” have become completely flat, as can

be seen in Figure 6.2. This makes them distinctly different from the training samples

and thus hard to for the OCR stage to recognize. Being able to train the character

recognition stage using both the Alte DIN 1451 Mittelschrift typeface and the Swedreg

typeface would most likely improve the result significantly.

Figure 6.2: The characters 3, 6 and 9 in the new Swedreg typeface (left) and the
characters 3, 6 and 9 in the Alte DIN 1451 Mittelschrift typeface (right).

6.2 Feasibility study

The overall system performance, Psystem, can be approximated from the previous module

tests as equation 6.1.

Psystem = Pextraction × Psegmentation × P 6
recognition (6.1)

Based on the performance from each of the previous tests and the equation 6.1, the

over all system performance should be 58.7% when applying the best performing con-

figurations. In Table 5.2 the actual over all system performance is indicated as 79.5%

when tested on on the 210 images spread across 42 vehicles, which is well above the

estimation. This means that the system is performing 20.8 percentage points above the

expected performance.
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To see why this is, the individual module performance is listed in Table 5.1 and compared

to the expected performance in Table 6.1. In the comparison it is evident that the

majority of the performance gain is archived in the recognition module. There are

many reasons why this could be, but the most likely is the usage of characters with

greater height. In the module test all of the input characters where of the same height,

between 10 pixels and 25 pixels. The system implementation always utilize the maximum

resolution available, thus as the test images are taken at different distances and angles

from the vehicles resulting in the character resolution varying between 19 pixels and

46 pixels. This result emphasizes the importance of a high resolution input for the

recognition module to perform optimally.

Expected performance Measured performance
Extraction module 91.1% 96.7%

Segmentation module 97.2% 95.6%
Recognition module 66.3% (93.4% per char) 86.1%

Table 6.1: A comparison between calculated system performance and measured sys-
tem performance

As was mentioned in Section 6.1.3, the letters M and W in the Swedish license plate

typeface are significantly different from the Alte DIN 1451 Mittelschrift used to train the

recognition stage. Table 5.2 reveal that only 5% of the license plates containing either

of the characters M or W were successfully recognized. Removing all images with plates

containing these two letters improved the over all system performance by 7.9 percentage

points, resulting in a total performance of 87.4% for the complete system. This also

suggests that the system performance could be significantly improved by obtaining and

training the OCR engine with the actual license plate typeface.

The execution time archived is no where close to being able to process all frames pro-

duced by the camera (30 FPS). In Table 5.2 the average execution time to process one

frame is calculated to 320 ms, which corresponds to just above 3 FPS, but from a user

interaction perspective the necessary response time is much lower. Ickin et al. [71] rec-

ommend a response time of less 950 ms for mobile applications to ensure user satisfaction

and the 320 ms is well below this threshold. This means that almost three frames can

be processed before the user need a response from the application. These frames could

e.g. be combined into one output and in turn increase the confidence in the recognition.

Further, during the heavy load of the benchmark the Google Glass became noticeably

warmer and the battery performance reduced greatly. Even though there are available

external battery packs to tackle the battery issue, this might indicate that the Google

Glass specifically is not yet ready for intensive and demanding industry use, but these

limitations might not apply to other smart glasses brands.
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When forcing the Google Glass preview frame size (the camera stream used to grab

individual frames for the live stream) to its maximum resolution 1920x1080, to be able

to detect the license plate at as far distance as possible, it struggled to update the screen

in a smooth manner. This further adds to the immaturity concerns of the Google Glass.

Many of the hardware limitations will most likely be reduced as dedicated graphical

processing units become available to developers. As many of the computations performed

in the proposed system are suitable for GPU’s, these will be able to significantly reduce

the load on the CPU and most likely speed up the execution while reducing battery

consumption at the same time.



Chapter 7

Conclusion

During the study of previous research, a combination of vertical edge detection for license

plate candidate detection and a boosted cascade classifier using Haar-like features was

deemed the fastest and most accurate method for license plate extraction on ARM-based

smart glasses. Further, the extremely fast character segmentation method of vertical

and horizontal projections was chosen, as well as the widely used and open source OCR

library, Tesseract, for character recognition.

The ALPR system was successfully implemented on a pair of ARM-based Google Glass

smart glasses with 79,5% successfully recognized license plates while processing slightly

above 3 FPS on average. Even though the system performs well enough for non-critical

applications there is a large room for improvement and as discussed in Section 6.1.3 there

are indications that a large performance gain could be achieved by simply recreating the

actual license plate typefaces to train the recognition stage with.

7.1 Future research

When the GPU becomes more developed and accessible to developers on smart glasses,

there could most likely be a significant boost in execution time, as many of the compu-

tations in the suggested implementation can be performed independently. This should

be researched as well as how such an implementation should be implemented.

Another interesting aspect would be to research the possibility to pass heavy compu-

tations through a wireless connection to the users smartphone, which most likely have

more computational power available. If latency is of low importance, then pushing the

computations to the cloud would be an interesting aspect to research.
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While performing this thesis, it was obvious that there is very little knowledge about

how information should be presented in this new format. This needs to be research as

well as aspects on how the users would like to interact with the device. During some

shorter sessions where unexperienced smart glass users got to try the device, it was

apparent that the way to interact with the glasses was not intuitive.

It also needs to be researched and determined wether smart glasses are safe to wear

while operating a vehicle.
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Appendix A

Module optimization results

A.1 License Plate Extraction Results

Config. Input resolution Scaling factor Plate candi-

dates

Recall Total ex-

ecution

time

1 320x180 1.03 1,2 4.03% 255 ms

2 320x180 1.05 1,2 3.23% 183 ms

3 320x180 1.07 1,2 3.23% 151 ms

4 320x180 1.09 1,2 2.42% 131 ms

5 320x180 1.11 1,2 2.42% 124 ms

6 320x180 1.13 1,2 3.23% 109 ms

7 640x360 1.03 6,1 94.4% 358 ms

8 640x360 1.05 6,1 94.4% 306 ms

9 640x360 1.07 6,1 93.6% 285 ms

10 640x360 1.09 6,1 91.9% 272 ms

11 640x360 1.11 6,1 91.1% 264 ms

12 640x360 1.13 6,1 91.1% 248 ms

13 800x600 1.03 9,4 98.4% 523 ms

14 800x600 1.05 9,4 98.4% 486 ms

15 800x600 1.07 9,4 98.4% 462 ms

16 800x600 1.09 9,4 96.8% 448 ms

17 800x600 1.11 9,4 96.0% 444 ms

18 800x600 1.13 9,4 94.4% 429 ms

19 960x720 1.03 18,8 95.2% 1084 ms

20 960x720 1.05 18,8 94.4% 1026 ms

21 960x720 1.07 18,8 93.6% 993 ms
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22 960x720 1.09 18,8 91.9% 994 ms

23 960x720 1.11 18,8 91.9% 981 ms

24 960x720 1.13 18,8 92.7% 951 ms

25 1280x960 1.03 25,4 93.6% 1973 ms

26 1280x960 1.05 25,4 93.6% 1882 ms

27 1280x960 1.07 25,4 91.1% 1870 ms

28 1280x960 1.09 25,4 91.9% 1869 ms

29 1280x960 1.11 25,4 91.9% 1852 ms

30 1280x960 1.13 25,4 88.7% 1817 ms

Table A.1: The complete results from the license plate extraction optimization.
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